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A B S T R A C T  

In the connected case, we compute explicitly the f-localization (in the 

sense of [3]) for the class of maps Z(n) ~-+ Z in which the cofibre is a 

wedge of spheres. We have an analogous result over the rationals where 

the cofibre is arbitrary. 

1. In troduct ion  

The homotopy localization framework described by Farjoun in [3] gives a general 

way to do homotopy theory which encompasses all the other major localization 
theories, e.g., Sullivan-Quillen localizations, Bousfield-Kan localizations (when 

R ~  is idempotent), Bousfield homological localization, and Quillen's plus con- 
struction. 

For any map f:  A -+ B, Farjoun constructs an associated localization theory 

around an idempotent functor Lf and shows that the above theories correspond 

to specific choices of f .  

Thus, given a map f ,  it becomes imperative to be able to compute L I X .  

Unfortunately this task is not an easy one since, in general, the construction 

involves a transfinite induction (Quillen's small object argument is involved). 

In this paper, in the category of connected CW-complexes, we compute L I X  

for an important class of maps f ,  i.e., inclusions, Z (n) ~ Z, of nilpotent nth 

skeletons Z (~) into nilpotent spaces Z for which the cofibre is a wedge of spheres 
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(e.g. S 2 y S 2 r S 2 x $2). In fact we show (Theorem 9) that LIX  depends only 

on [Z (n), X] and Z (k), where k - 1 is the connectivity of the homotopy cofibre, 

C/, of the map f (k > n). More precisely, LIX  is the (k - 1)-Postnikov stage of 

the adjunction space 

x u (U (U 
Cob a 

where h: V a S k-1 --4 Z (n) is the attaching map of the kth cells into Z('*), and 

I c map(Z('*), X) is a set containing exactly one representative of each homotopy 

class in [Z (n), X] such that r o h ~ *. 

In the case of P-localisation, in the sense of [4], we show that a P-local space 

X is f-local if and only if it is f~,-local (Theorem 12). Thus f-localization can 

be done inside the P-category. 

Finally, in the category of simply connected rational spaces, we obtain the 

same result as the integral one except that the condition on the cofibre is lifted, 

i.e., the inclusions Z(") ~ Z are arbitrary (Theorem 16). 

2. Def in i t ions  

We work in the category of topological spaces (Top) having the homotopy type 

of a CW-complex. The pointed category will be denoted by Top., and the re- 

spective function complexes map(X, Y) and map. (X, Y) will be denoted by y X  
and (yX). .  

Definition 1: A space X is f-local, where ]:  A -+ B is a map between cofibrant 

spaces, if the induced map on function complexes 

f#: X B --+ X A 

g~-+ go f 

is a weak equivalence. 

Remark: If we assume that  all spaces are cofibrant, one could define a pointed 

version of this notion in the obvious way. In the connected category (Topo) the 

commutative diagram 

(xB), "X B ~ � 9  

(XA) * , X A  e ~ , X  

of fibratious and its induced long exact sequence in homotopy together with the 

5-1emma show that  ( f# ) .  is a weak equivalence if and only if f#  is. 
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Definition 2: A functor ~" is said to be coaugmented if it comes equipped with 

a natural transformation j:  Id ~ jr. The functor is said to be idempotent if 

both natural maps J y x  and :F(jx) are weak equivalences and are homotopic to 

each other. We say that the coaugmentation map Jx is universal with respect to 

maps X ~ T into f-local spaces T if such a map factors uniquely up to homotopy 

through i x .  

THEOREM 1 ([3]): For any map f: A --4 B in Top (or Top, ) there exists a functor 
L I from Top (or Top,) to f-local spaces, called the f-localization functor, which 
is coaugmented and idempotent. Any two such functors are naturally weakly 
equivalent to each other. Moreover, the coaugmentation is universal. 

Remark: The functors Lw-~, = L,-~w will be denoted by Pw. The functor 

Pw is called the W-nullification functor. 

COROLLARY 2 ([3]): L I ~- Lg if and only if every f-local space is also g-local 

and vice versa. 

3. Characterizations in the connected case 

For now on, we will work exclusively in Top,, thus we will forego the subscript 

for the base point preserving function complex (xY),. Consider well pointed 
spaces (X, Xo), (Y, Yo), and (Z, zo). Recall that the space X D< Y is the quotient 

space (X x Y)/(X • {Yo}). Let r E Z Y and consider the pointed space (Z Y, r 
The pointed exponential law is thus given by 

m a p . ( x ,  z v)  ~- (h: X ~ V -* ZlhlY = r 

This in turn induces on the level of pointed homotopy classes the following 

equivalence, 

[(X, xo) , (Z Y,r ~ [ X ~ V , Z ] , ,  

where the subscript r is there as a reminder that homotopies are taken relative 

to r 

PROPOSITION 3: A connected space (X, xo) is f-local if and only if for all n >_ 1 
and for all r E X B 

�9 [B, X] ~- [A, X], and 

�9 IS- ~ B, x ] ,  ~ IS" ~ A, X]~o~. 

Proof: This follows from the above observations. 1 
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Remark: A connected W-null space X is a space which satisfies in particular 

[w, x]  ~ ,, 

i.e., the space X W is connected. Thus, without lost of generality, the base point 

r of X W can be chosen to be the constant map at Xo. This implies that the 

higher dimensional conditions all collapse to 

0 z [s" ~ w, X]~o ~ [s" ^ w, x]  ~ [r~-w, x] .  

Example: A connected S ' -nul l  space X is just an arbitrary Postnikov (n - 1)- 

stage since it has no homotopy groups above dimension (n - 1). We have, in the 

connected case, Ps,+' ~- Pn, the n th  Postnikov section functor. 

In general, half-smashes are not very tractable. But in the special case where 

f :  A -+ B is the cofibre of a map g: Z -+ A we have 

PROPOSITION 4: I f  f:  A ~ B is the cofibre of a map g: Z -+ A, a connected 

space X is f-local if  and only if  

�9 for all n _> 1, [~'*Z, X] -- 0, and 

�9 the map [f, X]: [B, X] --+ [A, X] is onto. 

Proof: Given any map r E X B we have a fibration 

( x  8, r -+ ( x  A, r o f) --+ ( x  z , ,), 

and a long exact homotopy sequence 

[E"+~z, x]  -+ ~ . ( x  B, r -+ ~ . ( x  A, r o f) -~ [~"z, x]. 

Therefore, the middle arrow is an isomorphism for all n _ 0 if and only if 

[ZnZ, X] = 0, n > 1, and [f,X]: [B,X] ~ [A,X] is onto. Notice that we 

use the natural coaction B --+ EZ V B to show that the map If, X] is injective 

([5]). m 

For an arbitrary map f :  A -+ B we deduce the following necessary conditions 

on a connected space X to be f-local. 

PROPOSITION 5: I f  X is I-local then 

�9 for all n >_ O, [EnC:, X] -- 0, where C! is the homotopy cofibre of the map 

f:  A --+ B, and 
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�9 the map [f, X]: [B, X] -~ [A, X] is onto. 

Proof: By considering the connected component of the constant map in X B, 

the result follows from Proposition 3 and the long exact sequence of pointed sets 

([6, p. 1341) 

x] -+ x] -+ x]-+ s, x]. . 

Remark: Any f-local space is thus C/-null. The reverse implication is not true 

as we will see in the next section. 

To detect f-local spaces, Casacuberta and Rodriguez showed recently in [1] 

that one can forget the map r in Proposition 3 and consider only base point 

preserving homotopy classes, namely 

PROPOSITION 6 ([1]): Let f: A --~ B be any map between CW-complexes. Then 

a space X is f-local if and only if  f induces a bijection [B, X] ~- [A, X] together 

with [S '~ x B, X] TM [S '~ x A, X] for n >_ 1. 

Consider the following commutative diagram 

S n xA ..... 
S n 

> S " x B  ...... 
�9 S" x C! 

- B  

7 � 9  

where the bottom face is a homotopy pushout and all vertical faces are homotopy 

pullbacks induced by the trivial fibration S" x 6'/ -~ Cy. Then, by a result of 

Cornea ([2]), the induced diagram 

S ~ x A �9 S n x B 

, ~ S ~ ~< C I 

is a homotopy pushout. Thus the homotopy cofibre of the map S n x f is S '~ ~< C I. 

We get a sequence for each n > 1, 

[S '~ x CI, X] ~ [S" t< B, X] ~ [S" x A, X], 
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which is exact (as pointed sets) at the middle term. If X is el-null ,  then x c t  is 

connected. Thus for each r E X cs and each n _> 1, 

[S" ~ e l ,  X]r ~ [~"C l ,  X] ~ 0, 

which implies that  [S • ~< e l ,  X] ~- �9 for each n > 1. In the case where A and B 

are co-H-spaces, the above remarks together with Proposition 6 show that  

PROPOSITION 7: A connected space X is f-local if  and only i f  

�9 X is el-null ,  

�9 the map [f ,X]:  [B,X] --~ [A,X] is onto, and 

�9 each map IS n D< f ,  X]: [S '~ ~< B, X] --+ IS n ~< A, X] is onto for n >_ 1. 

4. Main  theorem 

Let (X, A) be a relative CW-complex in which both X and A are nilpotent, and 

consider the inclusion f :  A r X. Let k = inf{lIX(0 r A}. Without loss of 

generality we can assume that k = corm(el)  + 1. We thus have a sequence of 

cofibration given by the attaching maps 

V Sk-1 �9 A 

X 

such that f . . . .  o ik+l o ik. In general, if f = g o h and Y is g- and h-local, then 

it is f-local. With the above notation we have 

THEOREM 8: [f C I is a wedge of spheres, then Y is f-local if  and only if it is 

ik-local. 

Proof  If Y is/k-local then, since ik is the cofibre of the attaching map v S  k-1 

A, by Proposition 4 we have lr_>k(Y) = 0. Thus for each l _> k the maps [il, Y] 

are onto. It follows that Y is iz-local for each I >_ k. Hence it is f-local. If Y is 

f-local, then for each map r E Y xc~ , the induced maps 

r n ( Y  x(~) , r ~ r n ( Y  A, r o ik) 
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are onto for all n > 0. Thus, the long exact sequence in homotopy associated to 

the fibration sequence Y xt*) --+ y A  ~ y v S  ~-~ gives rise to short exact sequences 

,_ Xtk) ., 0 --+ [V S'*+k' r]  ~ 7r'*[Y , r -4 lrn(r  A, r o ik) --+ 0 

for each n > O. But Y, being f-local, is Cl-local. By hypothesis C I is a wedge of 

spheres of connectivity k - i, Thus zr>k(Y ) = 0, and hence Y is ik-local. | 

THEOREM 9: Let Z be a nilpotent connected CW-complex such that the inclu- 

sion f:  Z(") ,-4 Z has as cofibre a non-trivial wedge of spheres together with Z(") 

nilpotent. Let k = conn(Cl)  + 1. Then for any connected space X 

L f X  ~- P s ~ { X u ( U ( U e k ) ) r  
Cob a 

where h: Va  Sk-1 "-+ Z('*) is the attaching map of the kth cells into Z('*), and I C 

map(Z('*), X) is a set containing exactly one representative r of each homotopy 

class in [Z("), X] such that r o h 7~ *. 

Proof  By Theorem 8 and Corollary 2, Lf  ~- Li, where i is the inclusion Z('*) 

Z (k). Note that  n < k. From Proposition 4, any connected/-local space W has 

Irk+jW = 0 for all j >_ 0. Moreover, any map Z (n) --+ W extends through i to a 

map Z (k) --4 W. Consider the following homotopy pushout diagram 

V,(V~ Sk-t) v h  V+elz('* ) v,~,~ X 

V, z(~) " 2 

where )~ = X U (Ur ek))vez �9 The space PskX is /-local since any map 

Z('*) ~ Psk.~ extends through i to a map Z (k) -+ Psk,~. Indeed this is clear 

because by construction (PshX)('*) = X('*). Thus, from the cellular approxima- 

tion theorem, any map Z (n) --+ Psk.~ is homotopic to a map Z('*) ~ X (n) C X .  

Clearly there is no problem to extend the map to Z (k) by definition of 3f. If we 

use the functor m a p ( - ,  W )  on the defining diagram of )(, we obtain a homotopy 

pullback diagram 

W s -~ W x 

w V  z~k~ ~- ) w V  z(") 
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in which the bottom arrow is a weak equivalence since W is/-local. Thus the top 

arrow is also a weak equivalence, and consequently it induces an isomorphism on 

the set of path components, i.e., [)(, W] - IX, W]. Moreover, W being Sk-null, 

we have by universality 

[Psi2, w] [2, w] [x, w], 
and the result follows, namely L f X  ~_ Ps k X .  | 

Remarks: 

�9 For a general f :  A ~ B with its cofibre C!  still a wedge of spheres, any f -  

local space X has, by Proposition 5, ~r>tX = 0, where I is the connectivity 

of the cofibre C I. Moreover, if l <_ conn(A), then L!  "" Pm+~. 

* If [Z (n), X] has a group structure induced by either Z (n) being a co-H- 

space or X being an H-space, then one can restrict I,  in Theorem 9, to 

generators. 

Example: Consider the following inclusion f :  S e V S 2 ~ S 2 x S 2. Its homotopy 

cofibre is S 4. Moreover, f is the cofibre of the map [il, i2]: S 3 ---> S 2 V S 2, where 

the ij are the inclusions of S 2 into respectively the first and second factor of 

S 2 V S 2, and [, ] denotes the Whitehead product ([6, p. 472]). Thus, from Propo- 

sition 4, a connected space X is f-local if and only if for all n >_ 1, 7r3+n(X) = 0, 

and each map r S 2 V S 2 --+ X extends through f to a map S 2 x S 2 --+ X. 

This last condition amounts to an obstruction problem. Consider the following 

diagram 

Si [i'"2]~ S2V~2 r " X,4 

D4 ) S 2 • S 2 
From elementary obstruction theory there is a dotted arrow completing this 

diagram for each r if and only if the maps r 0 [il, i2] ~- *, i.e., if and only if 

[c~, ~1 = 0 for all ~ ,~  E ~2(X). We can now calculate L / S  2. Given a map 

E map($  2 V S 2, $2), the corresponding class r 0 [il, i~.] E ~3S 2 is a multiple of 

the class [~, ~] where t = Ids; .  Consider the pushout diagram 

~3 [Q'i2]> S2 V S 2 Idvld �9 $2 

1 ,L 
$2 U[~, d e4 

S 2 x S 2 , ~ �9 
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A 

We claim that  the third Postnikov section of this space, i.e., Ps4S 2, is f-local. 

But this is clear since 7r>4(Ps4S "~) = 0, and (Ps4S'2)(2) ~_ S 2. Thus, by the 

cellular approximation theorem, any map r S 2 v  S 2 --~ Ps4S 2 is homotopic to a 

map r S 2 V S 2 -+ S 2. Theorem 9 shows that it is the right candidate, i.e., 

L I S  2 ~_ Ps 4(S 2uk,~ ]e4). 

Moreover, we can calculate the homotopy groups of L I S  2. Notice that the ho- 

motopy class [~, ~] E zr3S 2 is twice the one of the Hopf map. Thus 

0, k = l o r k > _ 4 ,  
~rk(LIS 2) ~ Z, k = 2, 

z / 2 z ,  k = 3. 

Finally, an easy calculation gives L I S  k for all k >_ 1, i.e., 

LIS k 

S , k = 1, 
,~ P S  4 ( $2 U[il,i2] e4), k -- 2, 

- -  Ps4S 3 ~- K(Z,3) ,  k - -  3, 

*, k_>4. 

5. T h e  P - l o c a l  case  

Recall that if P is a subset of H, the set of prime numbers, then a group G is 

said to be V-local if the map x ~-~ x p is a bijection Vx E G and Vp E H - 9 .  For 

a simply connected space X we have 

THEOREM 10 ([4]): The following are equivalent. 

�9 For all n >_ 2, ~r,,X is P-local. 

�9 For all n >_ 2, Hn(X)  is P-local. 

If a simply connected space X satisfies one of the above conditions, then it is 

said to be P-local. For example, a rational space is a 0-local space, or equivalently, 

all its homotopy groups and homology groups are Q-vector spaces. Consider the 

map 

F :  V s2 
pEH-'P pEH-~  

where each map p: S 2 ~ S 2 is a map of degree p. Then a simply connected space 

X is V-local if and only if it is f~-local. In general L f ( ~ X )  ~ E ( L I X )  as the 

following example shows. Consider X = K0r ,  n). On the one hand Ps,+' X = X 

and ~ X  ~ *, but on the other Ps,+~ (~X)  ~ *. 
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PROPOSITION 11: For any simply connected space X we have 

LI , , (EX ) ~ ELI, ,X.  

Proof." One just has to notice that ELp,  X is already P-local. Thus, by univer- 

sality of the functor LI,,, we have a commutative diagram (up to homotopy) 

EX �9 E(Lp, X) 

LI , , (EX)  

in which r is clearly a weak equivalence (observe that it is an isomorphism in 

homology with coefficients in Zp). Finally, since we are working in the category of 

spaces having the homotopy type of a CW-complex, it is a homotopy equivalence. 
| 

Remark: We will denote LI , ,X  by Xp and the rationalization by Xo. 

Notice that by an homology long exact sequence argument we have 

g,(s '*  ~< X)  ~- H , ( X  V E"X) ~ H, (X)  (9 H,(E"X).  

Thus if X is P-local then so is S" v< X. Moreover, by an argument similar to 

Proposition 11, the localization map 

S" ~ X -~ (S" ~ X)~ 

is given by Sn ~< ix, where jx is the P-coaugmentation. 

THEOREM 12: Given a map g: A --+ B between simply connected spaces and a 

P-local space X ,  one has that X is g-local if and only if X is gp-local. 

Proo6 By naturality of the functor LI~, we have a commutative diagram 

g 
A , B  

1 
Ap gP �9 Bp 

where JA and jB are the P-coaugmentations. This, in turn, induces a commuta- 

tive diagram 

[B, X] [g,x] , [A, X] 

D~.xl T l~,xJ 
[B~,X] tg~,xl , [A~,X] 
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in which the vertical arrows are isomorphisms because of universality of the 

functor LI, , .  Thus the top arrow is an isomorphism if and only if the bottom 

one is. Again, by naturality, for any map r E X B" we have r  = r  

Consider the commutative diagram 

[S ~ D< B,X]r [s"~9,x] > [S n ~< A,X]r 

[s"~ ~,x] l T[s"~jA,x] 

Now we claim that the vertical arrows are isomorphisms. In fact, showing that 

they are isomorphisms is equivalent to showing that the induced maps X A~ --+ 

X A and X s~  --~ X B are weak equivalences. But, by a result of Casacuberta and 

Rodriguez ([1]), it is sufficient to show that the induced maps [jA, X]: [A~, X] -+ 

[A, X] and [S" ~< jA,  X]: IS n ~< A~, X] --+ IS" ~< A, X] are isomorphisms (similarly 

for B). Because of universality and the fact that X is P-local, they are indeed 

isomorphisms. Thus the top arrow is an isomorphism if and only if the bottom 

one is, and the result follows from Proposition 3. | 

6. T h e  r a t i o n a l  c a s e  

From now on, we will work exclusively in the category of simply connected 

rational spaces. The next proposition was known to W. Chacholsky, D. Stan- 

ley and the author. A thorough treatment (paper in preparation by these three 

authors) on closed classes should complete the picture. 

PROPOSITION 13: For any space A of connectivity n > O, we have PA ~-- Psi+ 1. 

Proof: From Proposition 3 we have: a space X is S"+l-null if and only if 

7r>,~X -- 0. A space X is A-null if and only if for all k _> 0, [~kA, X] = 0. It is a 

well known fact that  for any space Z, ~Z  --~Q Va Sn~ Thus the last condition 

reads [A, X] = 0 and lr>,,+lX = 0. Given that l r>,+lX = 0, X is, in particular, 
S"+2-null. Thus, the result follows from universality, namely 

[A, X] ~- [Ps.+2 A, X] 

[g(Tr,~+lA, n + 1), X] 

[Ps"+~ ( V Sn+1)' X] 
rk(~n+,A) 

V sn+l,x], 
rk(lr,,+ l A) 
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and Corollary 2. | 

COROLLARY 14: Given a map f: A --+ B, an f-local space X has 7r>lX = O, 

where I = conn(Cl). Moreover, i l l  < conn(A), then L f  ~- Ps~+l. 

Proo~ Using Proposition 4, the proof is essentially the same as in Proposition 

13. | 

Example: Consider the Hopf map h: S 3 --+ S 2. Its cofibre is CP 2. Thus, for 

simply connected rational spaces, Lh ~-- Ps~ ~ *. On the other hand, the next 

Hopf map g: S 7 --4 S 4 has F~P 2 as cofibre, thus, over the rationals, Lg ~- Ps4. 

THEOREM 15: Lee f: A -4 B be a map together with its associated Quillen 

minimal model (LV, dA) ~ (L(V @ W ) , D )  ([5]). Let k = conn(Cf) + 1 and 

denote by i the inclusion (LV, dA) ~ (L(V (9 Wk-1), D). Then, a rational space 

X is. f-local if  and only if  it is i-local. 

Proof: The same proof as for Theorem 8 goes through except at the very end 

where we need r>k(X)  = O. This is the case, since by Proposition 13, Pc I ~- Psk, 

and X is Cf-null. | 

Finally, we have the rational version of Theorem 9. 

THEOREM 16: Let f: A --> B be a map together with its associated Quillen 

minimal model (LV, dA) --> (L(V (9 W),  D). Suppose that V>n = 0 for some n 

and that k -  1 = conn(Cf ) > n, i.e., W<_n = O. Given a minimal model (LX, dz ) 

o[ a space Z, a model for L I Z  is given by the (k - 1)th Postnikov section of the 

space corresponding to the adjunction model 

d~E l a 

where 

�9 for each cp, (z r } is in one-to-one correspondence with a basis (w~} of Wk-1, 

�9 I C Hom(LV, LX) is a set containing exactly one representative r of each 

homotopy class in [LV, LX] such that CDw~ ~s 0 for some a, and 

�9 the differential is given by 5Ix -- dz and ~z r = CDw~. 

Proof." Consider the inclusion i: (LEdA) -+ (L(V G Wk-1) ,D).  Then, by 

Theorem 15 and Corollary 2, L I ~- Li. But thcn i is a map satisfying the 

hypotheses of Theorem 9 since its cofibre is a wedge of spheres. | 
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Remark: The last two results are in sharp contrast with the integral ones since 

we do not impose on Cf to be a wedge of spheres. 
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